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Summary Statement 

Developmental downregulation of LIS1 coordinates the balance between axonal elongation 

and pruning, which is essential for proper neuronal circuit formation but limits nerve 

regeneration. 
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Abstract 

The robust axonal growth and regenerative capacities of young neurons decrease substantially 

with age. This developmental downregulation of axonal growth may facilitate axonal pruning 

and neural circuit formation but limits functional recovery following nerve damage. While 

external factors influencing axonal growth have been extensively investigated, relatively little 

is known about the intrinsic molecular changes underlying the age-dependent reduction in 

regeneration capacity. We report that developmental downregulation of LIS1 is responsible for 

the decreased axonal extension capacity of mature dorsal root ganglion (DRG) neurons. In 

contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition 

restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the 

damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature 

DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated 

GSK-3β at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 

expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 

regulation may coordinate the balance between axonal growth and pruning during maturation 

of neuronal circuits.   
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Introduction 

The progressive growth of the vertebrate nervous system during embryonic and early postnatal 

development results in an overabundance of neural connections, requiring targeted elimination 

to facilitate functional circuit organization (Luo and O’Leary, 2005). An important regressive 

event is the “pruning” or selective removal of superfluous synapses, axon branches, and 

dendrites. Axon elimination can occur at different levels, involving small-scale pruning of 

axon terminals or larger-scale removal of entire collaterals (Vanderhaeghen and Cheng, 2010). 

Improper pruning in humans has been implicated in various disease states such as autism and 

schizophrenia (Rosenthal, 2011; Saugstad, 2011). In both flies and mammals, developmental 

pruning of entire axon branches occurs within a relatively short period of time (Nakamura and 

O'Leary, 1989; Watts et al., 2003). 

Developmental pruning of larger axon segments resembles the fragmentation and eventual 

disintegration of the distal axon segment following peripheral nerve transection, an active 

process known as Wallerian degeneration (Conforti et al., 2014). This degeneration allows 

proximal axons of the peripheral nervous system to regenerate and reinnervate targets, 

enabling at least partial functional recovery. In contrast to peripheral axons, the repair capacity 

of central axons is more limited and declines further with age. This unique characteristic of the 

peripheral nervous system stems at least in part from the ability of Schwann cells (SCs) to 

provide a proregenerative microenvironment (Son and Thompson, 1995) involving debris 
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clearance, upregulation of membrane-bound and diffusible cues for axonal guidance and 

organization (Parrinello et al., 2010), and release of prosurvival factors. With advancing age, 

however, both the speed and the extent of functional recovery decrease following peripheral 

nerve injury. A number of explanations have been proposed for slower and less complete 

functional recovery of peripheral axons with age. Adult peripheral axons may regenerate less 

vigorously than embryonic axons due to intrinsic changes such as decreased axonal transport 

by cytoskeletal proteins (Brunetti et al., 1987; McQuarrie and Lasek, 1989; Tashiro and 

Komiya, 1994). Alternatively, older axons may have fewer trophic factor receptors (Ferguson 

and Son, 2011; Uchida and Tomonaga, 1987). In addition, the periaxonal milieu provided by 

SCs in older animals has lower concentrations of growth and guidance factors (Bosse, 2012; 

Komiyama and Suzuki, 1992; Martini, 1994). Finally, impaired neuron-Schwann cell signaling 

may limit functional recovery by reducing the accuracy of target reinnervation (Kawabuchi et 

al., 2011). This downregulation of axon regeneration with age may be necessitated by the axon 

pruning process. One hypothesis is that, to ensure efficient axon pruning, the capacity for axon 

regeneration must be suppressed. 

LIS1 was originally identified as a gene mutated in lissencephaly (Dobyns, 1989; Dobyns et 

al., 1993; Reiner et al., 1993), a developmental brain disorder caused by defective neuronal 

migration and consequent cortical dysplasia. Regulation of the motor protein dynein by LIS1 

has been intensively investigated (Kardon and Vale, 2009; Vallee and Tsai, 2006; 
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Wynshaw-Boris, 2007). Movement of dynein toward the minus end of the microtubule 

network is essential for retrograde transport. We previously reported that LIS1 suppresses 

dynein motility on microtubules in an idling state, which is essential for plus-end-directed 

(anterograde) transport of dynein by kinesin-1 (Yamada et al., 2008). Some isolated 

lissencephaly sequence cases (40%) are caused by LIS1 haploinsufficiency. We found that in 

utero administration of calpain inhibitors rescued phenotypes of Lis1
+/−

 mice, including 

excessive neuronal apoptosis and migration deficits resulting in cortical dysplasia (Yamada et 

al., 2009). In addition, the blood-brain-barrier- (BBB-) permeable calpain inhibitor SNJ1945, 

delivered perinatally or in utero via pregnant dams, rescued defective neuronal migration in 

Lis1
+/−

 mice (Toba et al., 2013). 

Here, we demonstrate that physiological LIS1 downregulation via the DNA-binding zinc 

finger protein CCCTC-binding factor (CTCF) (Ong and Corces, 2014) is responsible for the 

age-dependent decrease in axonal regenerative capacity of dorsal root ganglion (DRG) 

neurons. Our findings uncovered a surprising mechanism for the coordination between axonal 

extension and pruning by the regulation of LIS1 expression.  
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Results 

Maturation-Dependent Downregulation of Axonal Extension and LIS1 Expression in 

DRG Neurons 

DRG neurons are a favored model to study axonal regeneration because they possess two 

axonal branches, one of which projects into the peripheral and the other into the central nervous 

system. We isolated DRG neurons at various postnatal stages from Lis1
+/+

 (wild-type, WT) and 

Lis1
+/−

 (Lis1
−/−

 nulls die immediately after implantation) mice (Hirotsune et al., 1998) and 

examined the potential for axonal extension in cell culture. Axon length of each DRG neuron 

was defined as the sum of all projections including branches. At postnatal day P3, WT DRG 

neurons robustly extended axonal processes with extensive arborization, whereas axonal 

extension was significantly reduced at P15 (Figure 1A). DRG neurons derived from P3 Lis1
+/−

 

mice showed reduced axonal extension compared to age-matched WT mice (Figure 1A), 

suggesting that LIS1 insufficiency results in earlier downregulation of axonal extension and 

that LIS1 normally serves to maintain the robust axonal extension capacity of young neurons. 

We examined apoptotic cell death using an anti-active Caspase-3. There was no significant 

difference of apoptotic cell death between Lis1
+/+

 DRG neurons and Lis1
+/-

 DRG neurons 

(Figure S1A), suggesting that the reduced axonal extension of Lis1
+/-

 DRG neurons will not 

be attributable to the impairment of viability. Further, we examined whether developmental 

changes in LIS1 protein expression regulate the neurite extension capacity of DRG neurons. 
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Indeed, LIS1 was induced after plating and the degree of upregulation was age-dependent, with 

robust induction in P3 WT DRG neurons but much weaker induction at P15 as measured by 

western blotting (Figure 1B). 

To confirm that axon extension depends on LIS1 induction, we increased total expression by 

transfection of enhanced-green-fluorescent-protein- (eGFP-) tagged LIS1 in WT DRG 

neurons. Expression of exogenous LIS1 significantly enhanced extension at both P3 and P15 

(Figure 1C). Under physiological conditions, half of the total LIS1 protein is degraded by 

calpain-dependent proteolysis at the plus ends of microtubules, and inhibition or knockdown of 

calpains protected LIS1 from proteolysis and rescued the phenotypes of Lis1
+/−

 mice (Yamada 

et al., 2009). Similarly, peri- or postnatal treatment with the novel calpain inhibitor SNJ1945 

rescued defective cortical neuron migration, motor deficits, aberrant neurite length and 

branch number, and defective retrograde transport of nerve growth factor in Lis1
+/−

 mice 

(Toba et al., 2013). Thus, we examined whether endogenous LIS1 augmentation using 

SNJ1945 (Figure S1B) also facilitates axonal extension. Consistent with exogenous LIS1 

overexpression, SNJ1945 significantly enhanced axon extension at P15 (Figure 1D, Figure 

S1D), although not at P3, possibly due to limited augmentation relative to exogenous 

overexpression. We conclude that developmental downregulation of LIS1 expression reduces 

the regenerative capacity of maturing DRG neurons. 
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Characterization of the Regulatory Region of Lis1 

Deletion of the first coding exon of the mouse Lis1 gene results in the expression of a truncated 

protein, sLIS1, because of translation initiation at the second methionine (Cahana et al., 2001). 

Expression of sLIS1 suggests that other regulatory regions may be present outside the vicinity 

of the first exon, such as within the long first intron. We investigated the transcriptional 

regulatory region of Lis1 intron 1 using a Lis1 minigene conjugated to luciferase as an 

expression reporter (Figure S2A). Luciferase reporter gene constructs carrying various 

deletions of intron 1 were transfected into P3 and P15 DRG neurons, followed by the 

dual-luciferase reporter assay. Deletion construct #59 exhibited higher luciferase activity than 

the full-length Lis1 minigene and all deletion constructs, suggesting that a cis-repressive 

element may be present in the deleted region. To narrow down the regulatory region, we 

created luciferase reporter gene constructs carrying various deletions within the deleted region 

of the construct #59. The highest luciferase activity was detected in construct #9-1 (Figure 

S2B), defining the repressor region within a span of 4.5–10 kbp from the start of the first intron. 

Further, we applied in silico prediction of repressors that specifically bind to this region and 

found a potential binding site for CCCTC-binding factor (CTCF). Therefore, we examined the 

function of CTCF in the age-dependent repression of LIS1. We have examined the CTCF 

expression by Western blotting, and found that there was no significant difference between 
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P3 DRG neurons and P15 DRG neurons (Figure S2C). CTCF has been found in a subset of 

domain boundaries (Ong and Corces, 2014). Interacting CTCF boundaries showed a unique 

enrichment for H3K27me3 within the loops. Presumably, CTCF mediated LIS1 

downregulation will not be simply attributable to the up regulation of CTCF, rather to histone 

modifications.  

Negative Regulation of LIS1 Expression by CTCF 

CTCF binds to multiple DNA sequences through various combinations of 11 zinc fingers and 

mediates transcriptional activation/repression and chromatin insulation depending on the 

biological context (Ong and Corces, 2014). To address whether CTCF suppresses LIS1 

expression, we transfected P3 and P15 WT DRG neurons with eGFP-CTCF or siRNA against 

CTCF. Expression of eGFP-CTCF significantly suppressed endogenous LIS1 expression 

(Figure 2A), whereas CTCF depletion by siRNA enhanced endogenous LIS1 expression 

(Figure 2B). Therefore, we conclude that CTCF negatively regulates LIS1 expression. Further, 

exogenous expression of eGFP-CTCF significantly reduced axonal extension at P3 and more 

mildly suppressed axonal extension at P15 (Figure 2C), again consistent with the notion that 

LIS1 confers greater axonal extension capacity. Moreover, cotransfection of td-Tomato-Lis1 

with eGFP-CTCF rescued the decreased axonal extension at P3 (Figure 2C). On the other hand, 

CTCF depletion by siRNA transfection in P3 DRG neurons had no effect on axonal extension, 

whereas depletion at P15 significantly enhanced extension (Figure 3). Thus, we conclude that 
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CTCF controls the age-dependent downregulation of LIS1 and concomitant loss of axonal 

extension capacity. 

LIS1-Dependent Regulation of GSK-3β Distribution and Activation 

GSK3 is a key regulator of neurogenesis, polarization, neurite outgrowth, and plasticity (Hur 

and Zhou, 2010). GSK3 regulates microtubule growth and stability by phosphorylating 

microtubule associated proteins (MAPs) such as Tau, MAP1b, CRMP-2, and APC. Mutation 

or absence of these proteins alters the formation and growth of axons. GSK3-mediated 

phosphorylation of MAPs such as MAP1B and Tau appears to reduce microtubule binding, 

thereby creating a population of dynamically unstable microtubules (Trivedi et al., 2005). We 

previously demonstrated that LIS1 arrests dynein motility and that kinesin-1 transports a 

LIS1-dynein-tubulin complex to the plus ends of microtubules via mNUDC (Yamada et al., 

2010; Yamada et al., 2008). Therefore, we explored whether LIS1 expression modulates GSK3 

function via regulation of its dynein-dependent transport. Indeed, GSK-3β was elevated in the 

growth cones of DRG neurons from Lis1
+/−

 mice compared to Lis1
+/+

 mice (Figure 4A), and 

this aberrant accumulation of GSK-3β was reversed by administration of SNJ1945 (Figure 

4A). These results suggest that elevated LIS1 expression in young neurons serves to prevent 

GSK-3β accumulation in growth cones, concomitant MAP phosphorylation, and ensuing 

destabilization of microtubule dynamics, thereby allowing for axonal extension. We examined 

actin organization within the growth cone of Lis1
+/+

 DRG neurons and Lis1
+/-

 DRG neurons. 
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Curiously, growth cones of the Lis1
+/-

 DRG neurons were characterized by thicker and longer 

filopodia, which are formed by robust actin bundles (Figure 4B). GSK-3β can influence actin 

filament dynamics through activating Rac/Arf6 and Rho GTPases and thus contributing to the 

formation of lamellipodia at the cell front (Hur and Zhou, 2010). Excessive pool of GSK-3β 

may stabilize actin bundles, which leads to thicker and longer filopodia at the growth cone.  

To determine whether this GSK-3β accumulation occurs via LIS1 effects on axonal transport, 

we conducted live cell imaging of P3 DRG neurons expressing td-Tomato-tagged GSK-3β. 

The fusion protein exhibited robust bidirectional movement, suggesting that the subcellular 

distribution of GSK-3β relies on the activity of motor proteins, including kinesin and dynein. 

While there was no significant difference in the speed of retrograde GSK-3β movement 

between Lis1
+/−

 and Lis1
+/+

 axons (Figures 4C, 4D, and 4F, Movie S1), the ratio of retrograde 

to anterograde movement was significantly lower in DRG neurons from Lis1
+/−

 mice (Figures 

4C-4E, Movie S1). This decreased frequency of retrograde movement in Lis1
+/−

 DRG neurons 

was rescued by the addition of SNJ1945 (Figures 4C-4E, Movie S1). We conclude that LIS1 

expression is essential for the retrograde transport of GSK-3β and prevention of distal 

accumulation in growth cones. 

Phosphorylation of GSK-3β at Ser9 renders it inactive (Dudek et al., 1997), whereas 

phosphorylation at Tyr216, which lies within the activation loop between subdomains VII and 

VIII of the catalytic domain, is necessary for functional activity (Hughes et al., 1993). A 
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constitutively active GSK-3β mutant inhibited axon formation, whereas multiple axons formed 

from a single neuron when GSK-3β activity was reduced by small molecule inhibitors, a 

peptide inhibitor, or siRNAs (Jiang et al., 2005). To estimate the level of GSK-3β activity at the 

tip of the DRG neurons, we double-labeled DRG neurons from Lis1
+/−

 and Lis1
+/+

 mice with 

an antibody against total GSK-3β and another against either (inactive) GSK-3β phosphorylated 

at Ser9 (pS9-GSK-3β) (Figure 5) or active GSK-3β phosphorylated at Tyr 216 

(pY216-GSK-3β) (Figure 6) and determined the inactive/total and active/total GSK-3β ratios. 

The pS9-GSK-3β/GSK-3β ratio in the growth cones of P3 DRG neurons from Lis1
+/−

 mice was 

significantly lower than in growth cones of P3 Lis1
+/+

 mice (Figures 5A, 5B, and 5D). 

Conversely, the pY216-GSK-3β/GSK-3β ratio in the growth cones of P3 DRG neurons from 

Lis1
+/−

 mice was significantly higher than in growth cones of P3 Lis1
+/+

 mice (Figures 6A, 6B, 

and 6D). Further, this aberrant accumulation of GSK-3β in Lis1
+/−

 mice was rescued by 

SNJ1945 (Figures 5C and 5D, Figures 6C and 6D). Collectively, we conclude that GSK-3β is 

overactivated in the growth cones of P3 DRG neurons from Lis1
+/−

 mice, which will suppress 

axonal extension. 
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Facilitation of Axonal Regeneration by SNJ1945 after Sciatic Nerve Injury 

We previously reported that a calpain inhibitor upregulates LIS1 (Yamada et al., 2009) and 

facilitates neuronal circuit formation (Toba et al., 2013). To investigate whether endogenous 

LIS1 augmentation using SNJ1945 facilitates axonal regeneration after injury, we subjected 

mice to sciatic nerve (SN) axotomy, a common model of peripheral nerve injury in rodents 

(Magill et al., 2007), and compared regrowth and functional recovery between 

SNJ1945-treated and untreated groups. The left SN was transected at the obturator tendon level 

in 4-week-old WT mice, and the extent of injury and subsequent regeneration were evaluated 

by light and electron microscopy. Following nerve injury, toluidine blue staining of nerve cross 

sections revealed changes in the distal nerve stump characteristic of Wallerian degeneration, 

such as massive axonal swelling. Treatment with SNJ1945 had no obvious effect on SN 

regeneration at one week (Figure 7A, FigureS3A), but treated mice exhibited significantly 

more numerous myelinated SN fibers at one month (Figure 7B) and numerically greater 

numbers at three months (Figure 7C) and six months (Figure 7D) after transection (results 

summarized in Figure 7E). Transected SNs from control mice exhibited only partial 

regeneration with hypomyelination compared to SNJ1945-treated mice at the same times after 

injury. This suggests that SNJ1945-induced enhancement of axonal L1S1 accelerates 

regeneration of the injured sciatic nerve (Figures 7B–7E). 
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In principle, this accelerated regeneration after injury could be mediated by facilitation of 

proximal axon growth, protection against proximal regression, accelerated distal Wallerian 

degeneration, or a combination. Previous studies examining the sequence of events following 

injury revealed at least three morphologically discernible phases (Wang et al., 2012). 

Seventy-two hours after transection, rapid fragmentation and cytoskeletal breakdown 

occurred along the full length of the distal axon, followed by increased microglial influx to 

clear axonal remnants. So, to distinguish among these possible mechanisms, we initiated 

SNJ1945 treatment one week after transection, beyond the early phase of degeneration. 

Although this latency attenuated initial recovery and remyelination of transected SN at one 

week, remyelination was still significantly augmented at one month (Figure 7E and 7F). We 

conclude that SNJ1945 treatment facilitates axon regeneration rather than removal of distal 

debris. 

To examine the efficacy of SNJ1945 treatment on functional motor recovery, walking-track 

analysis was performed using the sciatic function index (SFI) (de Medinaceli et al., 1984). 

Control transection model mice displayed prolonged functional deficits (Figure 7G, Figures 

S3B and S3C, Movies S2 and S3) and significantly lower SFI values throughout the 

twelve-week assessment period compared to SNJ1945-treated mice (Figure 7G, Figures S3B 

and S3C, Movies S2 and S3). These results suggest that SNJ1945 promotes SN reinnervation 

of appropriate muscle targets for motor function recovery but upregulating LIS1 expression. 
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 Axonal Pruning and LIS1 Downregulation 

Immature neuronal networks formed by axonal and dendritic sprouting subsequently undergo 

extensive pruning to form functional circuits. This pruning includes distinct processes for 

removal of axons, axon branches, and dendrites (Luo and O’Leary, 2005). It is speculated that, 

to ensure efficient axonal pruning, the capacity for axonal regeneration must be suppressed. 

We hypothesized that developmental LIS1 downregulation may be associated with axon and 

dendrite pruning because pruning and growth/regeneration require reciprocal effects on 

growth-associated processes such as cytoskeletal dynamics. 

We first examined the association of axonal extension during cortical development with LIS1 

expression. Like DRG neurons, cortical neurons isolated from P3 mice exhibited robust axonal 

outgrowth, whereas cortical neurons isolated from P15 or P60 mice showed markedly reduced 

outgrowth potential (Figure S4A). Thus, as in peripheral neurons, LIS1 downregulation was 

coupled to the maturation of cortical neurons (Figure S4B). We conclude that the parallel 

age-dependent reduction of axonal growth potential and LIS1 expression observed in the DRG 

is recapitulated in the central nervous system. 

We next examined neuronal circuit maturation in vivo under modulation of LIS1 or CTCF 

expression to assess effects on pruning. We focused on the postmammillary component of the 

mouse fornix, a tract of axons that extends beyond the mammillary bodies and into the 
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midbrain in the first postnatal week as the fornix-mammillary projection is established but 

progressively regresses until it is no longer detectable by the third postnatal week (Stanfield et 

al., 1987). To visualize the developing fornix, Fezf2-Gfp bacterial artificial chromosome (BAC) 

transgenic mice (Fezf2-Gfp), in which GFP expression is regulated by the promoter for the 

transcription factor Fezf2 (Gong et al., 2003; Kwan et al., 2008), were transfected with 

control, LISI, CTCF, or CTCF-targeted shRNA expression vectors by in utero gene transfer 

(Tabata and Nakajima, 2001). Transfection of a red fluorescent td-Tomato control plasmid at 

embryonic day 12.5 (E12.5) (Figures 8A and 8B) revealed numerous labeled fornix fibers 

extending into and beyond the mammillary body at P15. However, this postmammillary 

population was markedly diminished by P18 (Figure 8B) and completely absent at P21 

(Figures 8B and 8F). However, a substantial fraction of the postmammillary component 

survived at P21 in mice transfected with td-Tomato-Lis1, with the labeled axons confined to a 

sharply defined fiber bundle at the dorsolateral aspect of the mammillary nuclei (Figures 8C 

and 8F). Similarly, when CTCF was depleted by a targeted shRNA, survival of the 

postmammillary component was significantly increased at P21 compared to controls, with 

labeled fascicles continuing into the mammillary body (Figures 8D and 8F). (Alant et al., 

2013)In contrast, the postmammillary component underwent premature regression in mice 

overexpressing td-Tomato-CTCF, as surviving fascicles extending into the mammillary body 
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were clearly diminished at P15 (Figures 8E and 8F). Thus, CTCF-dependent LIS1 suppression 

is critical for axonal regression during development. 

Discussion 

We provided evidence that endogenous LIS1 is a key regulator of the balance between neural 

circuit formation and regenerative capacity in both the developing peripheral and the central 

nervous systems. DRG neurons exhibited an age-dependent reduction in axonal extension 

potential that was paralleled by downregulation of LIS1 expression. Further, extension 

potential was also reduced in young DRG neurons from Lis1
+/−

 mice. In both P15 WT and P3 

Lis1
+/−

 neurons, low extension potential was rescued by exogenous LIS1 overexpression and 

by endogenous LIS1 augmentation using the calpain inhibitor SNJ1945. In addition, we show 

that LIS1 is physiologically regulated by the insulator protein CTCR. LIS1 augmentation by 

SNJ1945 (Toba et al., 2013) promoted axonal extension, which suggests a novel approach for 

improving peripheral nerve regeneration after injury. A recent report provided evidence that 

the endogenous calpain inhibitor calpastatin functions as a determinant of axonal survival both 

during development and after injury (Yang et al., 2013). Therefore, calpastatin induction is a 

promising approach for blocking LIS1 suppression by calpains, thereby reinducing robust 

axonal growth. Oral SNJ1945 treatment in particular is a promising approach because 

SNJ1945 has low toxicity and high BBB permeability (Toba et al., 2013). Indeed, oral 
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SNJ1945 markedly accelerated recovery of motor function following sciatic nerve transection 

in mice. 

We also demonstrated that CTFC is involved in the physiological downregulation of LIS1. 

CTCF contains a highly conserved DNA-binding domain with 11 zinc fingers, enabling it to 

function as a major insulator for numerous target genes. In fact, CTCF is present at 55,000–

65,000 sites in the mammalian genome (Ong and Corces, 2014). Depletion of CTCF at P15 

facilitated axonal extension through LIS1 overexpression, whereas CTCF overexpression at P3 

suppressed axonal extension by LIS1 downregulation. In contrast, however, individual 

projection neurons in CTCF-cKO mice exhibited significantly reduced average dendritic 

lengths (Hirayama et al., 2012) rather than overextension. This contradictory result may 

indicate distinct regulatory mechanisms for axons and dendrites or arise because of different 

KO procedures. In the NEX-Cre mice used by Hirayama et al. (2012) for disruption of CTCF in 

postmitotic neurons, the most prominent Cre activity was observed in the neocortex and 

hippocampus beginning at around E11.5 (Goebbels et al., 2006). Within the dorsal 

telencephalon, Cre-mediated recombination was substantial in hippocampal pyramidal 

neurons, dentate gyrus hilar mossy cells, and DR granule cells, but absent from proliferating 

neural precursors (Goebbels et al., 2006). In the current study, an shRNA against CTCF was 

transfected into E12.5 embryos to examine the effect of depletion of CTCF on postmammillary 

fornix pruning. Thus, the discrepancy may be attributable to the earlier developmental stage of 
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CTCF disruption, which in turn could influence numerous subsequent developmental 

processes. Alternatively, CTCF functions in neural development may be region-specific. 

We found that LIS1 regulates axonal extension via transport of GSK-3β. GSK-3β is a 

multifunctional serine/threonine kinase known to regulate axon growth (Hur and Zhou, 2010) 

by phosphorylating MAPs such APC that control microtubule dynamics. When GSK3 activity 

is inhibited, APC binds to a microtubule plus end, by which it anchors spindle microtubules to 

the kinetochore and astral microtubules to the cell cortex (Hur and Zhou, 2010). By regulating 

microtubule assembly, GSK3 signaling is a key determinant of neuronal polarity and axonal 

extension. Indeed, inhibition of GSK-3β by small molecule inhibitors, peptide inhibitors, or 

shRNA induced multiple functional axons (Jiang et al., 2005). We found that GSK-3β 

accumulated in the axons of P3 DRG neurons from Lis1
+/−

 mice, with a significantly lower 

ratio of inactive to total GSK-3β (pS9-GSK-3β/GSK-3β) and a significantly higher ratio of 

active to total GSK-3β (pY216-GSK-3β/GSK-3β) compared to WT mice, indicative of greater 

GSK-3β activity (Dudek et al., 1997; Hughes et al., 1993). Retrograde transport of GSK-3β 

was significantly lower in Lis1
+/−

 DRG neurons than in Lis1
+/+

 DRG neurons, whereas 

anterograde transport was similar, which could account for the abnormal GSK-3β 

accumulation at the axon tip. We speculate that accumulation of GSK-3β at the axon tip 

impairs cytoskeletal dynamics, limiting axonal extension. 
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Selective elimination of axons, axon collaterals, dendrites, dendritic branches, and synapses 

without loss of the parent neuron occurs during normal development and in response to injury 

or degenerative diseases in the adult brain. Widespread overproduction or overextension of 

axonal projections, dendritic branches, and synaptic connections requires both small-scale and 

large-scale pruning to establish precise connectivity, and these same or similar growth and 

pruning mechanisms may be reactivated for neural plasticity in the adult nervous system (Luo 

and O’Leary, 2005). For example, the axons of retinal ganglion cells initially overshoot their 

future termination zone in the superior colliculus. Later, axon segments distal to the 

termination zone are pruned through local degeneration (Feldheim and O’Leary, 2010). In 

developing rats, great numbers of fibers extending through the fornix initially grow well 

beyond the mammillary bodies and into the mesencephalic and pontine tegmentum. This 

postmammillary component of the fornix is almost completely eliminated during the first few 

postnatal weeks (Stanfield et al., 1987). Remaining improper connections or excessive pruning 

may result in neuropsychiatric diseases, such as schizophrenia, depression, attention 

deficit/hyperactivity disorder, and autism (Liston et al., 2011; Rosenthal, 2011; Saugstad, 

2011). It will be of great interest to explore whether regulators of motor proteins and 

microtubule organization are involved in neuropsychiatric diseases via effects on neural circuit 

pruning. 
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While the intrinsic regenerative potential of axons may be partially suppressed for efficient 

pruning in the maturing nervous system, this decreased potential limits regeneration following 

traumatic injury and in pathological conditions such as Alzheimer’s disease, Parkinson’s 

disease, multiple sclerosis, and amyotrophic lateral sclerosis. A previous report indicated that 

calpastatin induction facilitated regeneration of damaged neurons. Consistent with this finding, 

the calpain inhibitor SNJ1945 enhanced sciatic nerve regeneration after injury via 

augmentation of LIS1. Therefore, our study identifies a novel therapeutic approach to 

peripheral nerve injury. 
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Materials and Methods 

DRG and Cortical Neuron Preparation, Culture, and Imaging 

Dorsal root ganglia from P3 and P15 mice were dissociated using a previous method (Lindsay, 

1988) with modifications. The cells were plated onto Matrigel-coated dishes (Corning, NY, 

USA) and cultured in DMEM (Wako Chemicals) supplemented with 10% heat-inactivated 

fetal bovine serum (Nichirei Biosciences), 10 ng/mL 2.5S mNGF (Sigma-Aldrich, St. Louis, 

MO, USA), and 5 mM uridine/deoxyfluorouridine (Sigma-Aldrich) for 48 h. Neurons were 

then transfected with the eGFP-LIS1 expression vector using the Neon Transfection System 

(Invitrogen). Mouse cortical neurons were isolated from P3, P15, and P60 mice. Briefly, 

cortical tissue was dissected and dissociated by trypsin digestion and trituration in serum-free 

medium (Hilgenberg and Smith, 2007) and maintained in Neurobasal medium supplemented 

with B27 (Invitrogen), GlutaMAX (Invitrogen), and penicillin/streptomycin. Fusion constructs 

of GSK-3β with td-Tomato or eGFP were transfected into DRG neurons to image GSK-3β 

migration. Particles in axons were tracked using an IX70 inverted microscope (Olympus) 

equipped with a stage cell incubator held at 37°C (MATS-LH, Tokai Hit). The images were 

captured with a digital CCD camera (EM-CCD C9100-13, Hamamatsu Photonics) and 

analyzed using MetaMorph software (MDS Analytical Technologies). 
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Immunoblotting and siRNA 

Cells or tissues were lysed in phosphate-buffered saline containing 0.2% NP-40. For 

immunoblotting, proteins were separated by SDS-PAGE under reducing conditions, followed 

by electrophoretic transfer to PVDF membranes. Membranes were probed using antibodies 

against βIII-tubulin (Abcam), CTCF (Abcam), GAPDH (Abcam), and LIS1, followed by 

visualization using a secondary antibody conjugated to alkaline phosphatase or horseradish 

peroxidase. Blots were developed using the BCIP/NBT phosphatase substrate system (Roche, 

Basel, Switzerland) or enhanced chemiluminescence technique (Amersham ECL Prime 

Western Blotting Detection Reagent RPN2232, GE Healthcare) on a LAS-3000 lumino-image 

analyzer system (GE Healthcare Biosciences, UK). Deprotected and double-stranded 

21-nucleotide RNAs targeting mouse CTCF were synthesized by Sigma-Aldrich (Japan). 

Immunocytochemistry 

Cells were fixed with 4% (w/v) paraformaldehyde for 15 min at room temperature and 

permeabilized using 0.2% Triton X-100 for 5 min at room temperature. The cells were then 

blocked using 5% (w/v) BSA in PBS and incubated with an anti-βIII-tubulin antibody 

(Abcam), an anti-LIS1 antibody, an anti-GSK-3β antibody (BD Biosciences), an 

anti-pS9-GSK-3β (CST) antibody, anti-pY216-GSK-3β (BD Biosciences) antibody, and 

anti-active Caspase-3 antibody (Abcam) followed by incubation with Alexa 488-conjugated 

anti-mouse IgG, Alexa 555-conjugated anti-rabbit IgG, and/or Alexa 647-conjugated 
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anti-rabbit IgG (Molecular Probes) as appropriate. Actin filament was stained by Rhodamine 

Phalloidin Conjugate (Thermo Fisher Sceintific). Nuclei were counterstained using 100 nM 

4′,6-diamidino-2-phenylindole (DAPI). Each incubation was performed for 1 h at room 

temperature. Slides were mounted in FluorSave Reagent (345789, Calbiochem). 

Immunofluorescence was measured under a laser scanning confocal microscope (TCS-SP5, 

Leica, or LSM 700, Carl Zeiss) under the control of accessory software (LAS AF, Leica, or 

ZEN 2012, Carl Zeiss). Nuclei were labeled with DAPI (Thermo Fisher Scientific). 

Generation of Luciferase Reporter Constructs, Transient DNA Transfection, and 

Luciferase Reporter Assays 

A BAC clone carrying murine Lis1 was obtained from Advanced Geno Techs (Japan). The 

Lis1 minigene was cloned into the luciferase reporter vector pGL4.23 (Promega). Luciferase 

was conjugated in-frame to the end of Lis1 exon II. For luciferase reporter assays, 

approximately 5 × 10
4
 DRG neurons per well were seeded in 6-well plates and cotransfected 

with luciferase constructs and Renilla control reporter vector (phRL-TK, Promega) at a ratio of 

10: 1 by electroporation using the Neon Transfection System (Invitrogen). Twenty-four hours 

after transfection, cells were lysed with Passive Lysis Buffer (Promega), and luciferase activity 

was measured using the Dual-Luciferase Assay System (Promega). 
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Surgical Procedure and Tissue Processing 

All mouse experiments were performed with the approval of the Animal Care and Ethics 

Committee of Osaka City University (authorization number: OCU-08033). First, animals were 

anesthetized by inhalation of sevoflurane (Wako Chemicals) and intraperitoneal injection of 

somnopentyl (Kyoritsu). The left SN was exposed from where it emerges over the external 

obturator muscle from the sciatic notch to the trifurcation above the popliteal fossa. The nerve 

was sharply transected 5 mm proximal to the sciatic trifurcation, the ends were left to retract in 

situ, and the wound was closed (Alant et al., 2013). One week (6 mice), one month (6 mice), 

and six months (5 mice) after transection, the incision site was opened and three approximately 

1 mm long segments of the nerve were obtained for preparation of transverse sections. The 

nerve segment was first fixed for a few seconds in a small drop of solution containing 2.5% 

glutaraldehyde and 0.5% sucrose in 0.1 M Sorensen phosphate buffer (pH 7.4) to stiffen the 

tissue for correct orientation and then placed in the same fixative solution for 6–8 hours. SN 

segments were then dehydrated through a graded ethanol series (50%, 70%, 80%, 90%, and 

100%) and embedded in Epon 812 resin, followed by thin sectioning at 70 nm thickness using 

an Ultramicrotome EM UC-6 (Leica Microsystems, Vienna, Austria). The specimens were 

finally stained with 0.4% lead citrate and observed under a transmission electron microscope 

(Hitachi). 
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Functional Analysis: Walking Tracks 

Before SN injury and once weekly for 5 weeks thereafter, all animals were subjected to 

walking-track analysis based on the protocol described by Inserra et al. (1998). Paw prints were 

recorded by painting the hind paws with India ink and animals were tracked as they walked 

along a 45 × 6.5 cm sheet of white paper (Canson A4, 140 g/m2). The paw prints of untreated 

and SNJ1945-treated mice were analyzed for two parameters: (1) toe spread (TS) as measured 

by the distance between the first and fifth toes and (2) print length (PL), the distance between 

the third toe and the hind pad. SFI was calculated according to the formula of Inserra et al. 

(1998): 

, 

where TS is the toe spread in mm, PL is the print length in mm, and E and N indicate the 

experimental and normal hind foot, respectively. Differences between the groups were 

assessed using the Mann–Whitney U test. A P value < 0.05 was considered statistically 

significant. 

In Utero Electroporation and Histological Examination 

In utero electroporation was performed using pregnant Fezf2-Gfp BAC transgenic mice as 

described previously (Gong et al., 2003; Kwan et al., 2008) with minor modifications. 
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Approximately 1 μL of the plasmid solution (0.3 μg pCAG-td-Tomato, 0.3 μg pCAG-Lis1, 0.3 

μg pCMV-CTCF, or 0.3 μg shRNA against CTCF (Sigma-Aldrich) with 0.03% fast green) was 

injected into the lateral ventricle of intrauterine embryos at embryonic day 12.5 (E12.5). The 

head of the embryo was placed between the disks of a forceps-type electrode (3 mm disk 

electrodes, CUY650P3; NEPA GENE, Chiba, Japan) and electronic pulses (30−50 V, 50 ms, 

five times) were applied for gene transfection into the cerebral wall. 

After in utero transfection, P15, P18, and P21 mice were perfused by 

periodate-lysine-paraformaldehyde fixative, pH 7.4. The mouse brains were removed and 

immersed in the same fixative overnight at 4°C. After fixation, the brains were placed in a 20% 

sucrose solution, embedded in OCT compound (Sakura), and frozen in liquid nitrogen. The 

frozen blocks were cut with a cryostat into 16 μm thick sections. Immunofluorescence analyzes 

were conducted under a laser scanning confocal microscope (TCS-SP5, Leica, or LSM 700, 

Carl Zeiss) using the accessory software (LAS AF, Leica, or ZEN 2012, Carl Zeiss).   
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Figure 1: Age-dependent reduction of axonal extension in DRG neurons. 

(A) Age-dependent downregulation of axonal extension capacity in DRG neurons. Cultures of 

DRG neurons were isolated from postnatal day P3 and P15 Lis1
+/+

 (wild-type, WT) and Lis1
+/−

 

mice and visualized by Tuj1 immunostaining (red) 24 and 48 h after plating. Nuclei were 

counterstained with DAPI (blue). Left panels: representative images. Axon length was defined 

as the summation of all axonal projections including branches. Right panel: average axonal 

length for each genotype and age with time after plating. Symbols indicate mean axonal lengths 

with standard errors (mean ± SE). DRG neurons from Lis1
+/+

 mice show an age-dependent 

reduction in axonal extension capacity, while P3 DRG neurons from Lis1
+/−

 mice exhibit 

limited axonal extension capacity of older (P15) Lis1
+/+

 neurons. Numbers of neurons 

examined are indicated in brackets. *P < 0.05 by analysis of variance (ANOVA). 

(B) Left panel: age-dependent LIS1 downregulation in cultured Lis1
+/+

 DRG neurons as 

revealed by western blotting. GAPDH was used as the internal control. Right panel: relative 

intensities from densitometric analysis. The zero-time LIS1/GAPDH ratio of P3 Lis1
+/+

 

neurons is defined as 1.0. LIS1 expression is much lower in Lis1
+/+

 P15 DRG neurons. ∗P < 

0.05 by ANOVA. (C) Effect of exogenous LIS1 expression on axonal extension. DRG neurons 

from P3 and P15 Lis1
+/+

 (WT) mice were transfected with eGFP-Lis1 or empty vector (eGFP). 

Left panels: representative images. Right panel: quantitation. LIS1 overexpression enhanced 

axonal extension of DRG neurons at both P3 and P15 compared to age-matched controls 
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(empty vector group). ∗P < 0.05 by ANOVA. (D) Effect of the calpain inhibitor SNJ1945 on 

axonal extension. Left panels: representative images. Right panel: quantitation. SNJ1945 

enhanced axonal extension of Lis1
+/+

 P15 DRG neurons compared to age-matched 

vehicle-treated controls but had no effect at P3. ∗P < 0.05 by ANOVA. 
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Figure 2: Downregulation of LIS1 expression and axonal extension in WT DRG neurons 

by CTCF. 

(A) Effect of exogenous CTCF expression on LIS1 expression in WT DRG neurons was 

examined by western blotting 48 h after transfection. CTCF overexpression downregulates 

LIS1. (B) Effect of siRNA-mediated CTCF depletion on LIS1 was examined by western 

blotting 48 h after transfection. Depletion of CTCF enhances LIS1 expression. GAPDH was 

used as the internal control. Note: CTCF migrates aberrantly on SDS-PAGE. Endogenous 

CTCF migrates as a 130 kDa (CTCF-130) protein; however, the open reading frame of the 

CTCF cDNA encodes only an 82 kDa protein (CTCF-82), in which the N- and C-terminal 

domains participate in this anomaly (Klenova et al., 1997). Expression of eGFP-CTCF was 

confirmed by western blotting using an anti-GFP antibody (eGFP-CTCF migrated to the same 

size band as endogenous CTCF protein). Statistical summary of densitometry shown in the 

right graph. ∗P < 0.05 and ∗∗P < 0.01 by Student’s t-test. (C) Exogenous expression of 

eGFP-CTCF suppressed axonal extension in WT P3 DRG neurons. Left panels: representative 

images. Right panel: statistical summary. Suppressive effect of exogenous eGFP-CTCF on 

axonal extension was rescued by cotransfection with td-Tomato-Lis1. ∗P < 0.05 by ANOVA. 
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Figure 3: CTCF depletion by siRNA enhances axonal extension capacity at P15. 

Depletion of CTCF by siRNA enhanced axonal extension in WT P15 DRG neurons, whereas 

there was no obvious effect on axonal extension in WT P3 DRG neurons (upper panels). 

Facilitated axonal extension in CTCF-depleted DRG neurons was reversed by cotransfection 
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with eGFP-CTCF (lower panels). Representative images shown in left panels, means with 

standard errors in the right graph. ∗P < 0.05 (ANOVA). 
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Figure 4: Axonal transport of GSK-3β in DRG neurons. 

(A) Distribution of GSK-3β in P3 DRG neurons from Lis1
+/+

 (WT), untreated Lis1
+/−

, and 

SNJ1945-treated Lis1
+/−

 mice. Red arrowheads indicate growth cones of DRG neurons. 

Quantitation of fluorescence intensity (bottom) reveals GSK-3β accumulation in growth cones 

of Lis1
+/−

 mice compared to Lis1
+/+

 mice and rescue of aberrant growth cone accumulation by 

SNJ1945. ∗P < 0.05 (ANOVA). (B) Visualization of actin cytoskeleton at the growth cone of 

DRG neurons using rhodamine phalloidin. The growth cone of DRG neurons from Lis1
+/−

 

mice was characterized by thicker and longer filopodia compared to the growth cone of DRG 

neurons from Lis1
+/−

 mice. Statistical analysis is shown at the right side. (C) eGFP-GSK-3β 

was expressed in P3 DRG neurons and monitored by time-lapse fluorescence microscopy. 

Anterograde movement and retrograde movement are shown by red dotted lines and white 

dotted lines, respectively. Elapsed time is indicated at the bottom. (D) Trajectories of 

eGFP-GSK-3β movement in axons of P3 DRG neurons from Lis1
+/+

 mice (left panels), Lis1
+/−

 

mice (middle panels), and SNJ1945-treated Lis1
+/−

 mice (right panels). Retrograde and 

anterograde movements are shown in upper and lower panels, respectively. Note the 

diminished retrograde displacement (upper middle panel) in untreated Lis1
+/−

 mice. (E) The 

ratio of retrograde frequency to anterograde frequency of eGFP-GSK-3β in DRG neurons. 

Retrograde movement frequency was significantly lower in Lis1
+/−

 mice and rescued by 

SNJ1945. ∗P < 0.05 by ANOVA. (F) Velocity of eGFP-GSK-3β axonal transport in P3 DRG 
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neurons. There was no significant difference in transport velocity during displacement 

between Lis1
+/−

 and Lis1
+/+

 mice. 
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Figure 5: Distribution of phospho-GSK-3β (Ser9) in DRG neurons. 

(A−C) Left panels: DRG neurons from (A) Lis1
+/+

 mice, (B) Lis1
+/−

 mice, and (C) 

SNJ1945-treated Lis1
+/−

 mice stained with anti-GSK-3β (red) and anti-pS9-GSK-3β (green). 

Middle panels: higher-magnification images of an area demarcated in the left panels (white 

boxes). Right panels: normalized fluorescence intensity along the axon. Red arrowheads 

indicate growth cones. Greater fluorescence intensity at the growth cones of DRG neurons 

from Lis1
+/+

 (middle) and SNJ1945-treated Lis1
+/−

 (bottom) mice indicates accumulation of 

total GSK-3β and anti-pS9-GSK-3β. (D) Quantitation of anti-pS9-GSK-3β to total GSK-3β 

intensity in growth cones indicates relatively lower accumulation of the inactive 

anti-pS9-GSK-3β in Lis1
+/−

 growth cones and reversal by SNJ1945. ∗P < 0.05 (ANOVA). 
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Figure 6: Distribution of phospho-GSK-3β (Tyr216) in DRG neurons. 

(A−C) Left panels: DRG neurons from (A) Lis1
+/+

 mice, (B) Lis1
+/−

 mice, and (C) 

SNJ1945-treated Lis1
+/−

 mice. Anti-GSK-3β and anti-pY216-GSK-3β immunostaining. 

Middle panels: higher-magnification images of an area demarcated in the left panels (white 

boxes). Left panels: normalized fluorescence intensity along the axon length. The red arrow 

indicates the position of the growth cone (tip). (D) Quantitation of anti-pS9-GSK-3β to total 

GSK-3β intensity in growth cones indicates relatively greater accumulation of the active 

pY216-GSK-3β form in Lis1
+/−

 growth cones compared to Lis1
+/+

 growth cones. ∗P < 0.05 by 

ANOVA. 
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Figure 7: Facilitation of sciatic nerve regeneration by SNJ1945. 

Transection model of mouse SN injury. Imaging modality, orientation, and magnification are 

as follows: panel 1, low-magnification Prussian blue staining; panel 2, high-magnification 

Prussian blue staining; panel 3, electron microscopic (EM) image at low magnification; panel 

4, EM at higher-magnification. Effects of oral SNJ1945 treatment on SN axon remyelination 

one week (A), one month (B), three months (C), and six months (D) after transection. Upper 

panels are from the untreated transection group (control). Lower panels are from mice treated 

with oral SNJ1945 after SN transection. SNJ1945 treatment accelerated remyelination of the 

sciatic nerve. (E) Statistical summary (mean ± SE for 10 mice) showing enhanced numbers of 

regenerated myelinated SN axons in SNJ1945-treated mice after transection. ∗P < 0.05 and ∗∗P 

< 0.01 (ANOVA). (F) Effect of SNJ1945 on regeneration/remyelination when administration 

was delayed for one week after transection. Left panels: one week after transection (without 

treatment). Right panels: after one month of treatment. SNJ1945 treatment was still effective. 

(G) Gait analysis during recovery from SN transection. SFI of gait analysis indicating 

facilitated functional recovery after transection in SNJ1945-treated mice. ∗P < 0.05 by Mann–

Whitney U test. 
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Figure 8: Developmental LIS1 downregulation promotes axonal pruning of the 

postmammillary component of the fornix. 

(A) CAG promoter-driven td-Tomato was expressed in Fezf2-Gfp BAC transgenic mice to 

trace the postmammillary component of the fornix. Illustration indicates the orientation of the 

postmammillary component, which was divided into 30 bins for quantitation. (B) 

CAG-td-Tomato expression vector was electroporated at E12.5 and mice were inspected at 

P15, P18, and P21. The postmammillary component was still present at P15, pruned by P18, 

and completely absent at P21. (C) CAG-td-Tomato-Lis1 was introduced at E12.5 and the 

postmammillary component examined. The postmammillary component was still present at 

P18 and P21, indicating that LIS1 overexpression suppressed pruning of the postmammillary 

component. (D) shRNA against CTCF was introduced at E12.5 and the postmammillary 

component examined. The postmammillary component was still present at P18 and P21. (E) 

CAG-td-Tomato-CTCF was introduced at E12.5 and the postmammillary component 

examined. Postmammillary component disappeared prematurely by P15. (F) Quantitation of 

fluorescence intensity in each bin of the postmammillary component (see Figure A). 
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Figure S1 (related to Figure 1): Examination of apoptotic cell death of Lis1+/- DRG neurons and the effect of 
SNJ1945 on LIS1 in DRG neurons

(A) Apoptotic cell death of DRG neurons was examined by an antibody against the p17 fragment of the active 
Caspase-3. There was no significant difference between Lis1+/+ DRG neurons and Lis1+/- DRG neurons. Statistical 
analysis is shown at the right side.
(B) LIS1 expression after SNJ1945 treatment. GAPDH was used as the internal control for western blotting. SNJ1945 
markedly enhanced LIS1 expression of DRG neurons from P15 but not from P3 mice. Relative intensities from densito-
metric analysis 24 hours after plating are shown in the right panel. The ratio of LIS1/GAPDH in control P3 mice is 
defined as 1.0. **P < 0.01 by Student’s t-test. 

Biology Open (2017): doi:10.1242/bio.025999: Supplementary information

B
io

lo
gy

 O
pe

n 
• 

S
up

pl
em

en
ta

ry
 in

fo
rm

at
io

n



A
5’ 3’0 5 25201510

Exon1 Exon2

-5-10 (kbp)

B
5’ 3’0 5 25201510

Exon1 Exon2

-5-10 (kbp)

0 5 10 15 20

P3

P15

P3

P15

#39

#9

#9-1

#9-2

#9-3

Relative luciferase activity

0 5 10 15 20

*
#59

Lis1

*

Relative luciferase activity

CTCF

GAPDH

E
xp

re
ss

io
n 

ra
tio

 o
f C

TC
F

0

0.2

0.4

0.6

0.8

1.0

1.2

P3 P15
(n=3) (n=3)

P3 P15

C

Figure S2: Identification of the Lis1 suppressor binding site by reporter gene assay  (related to Figure 2)

(A) Left panel: Schematic of luciferase reporter constructs containing various deletions within the first intron of Lis1. 
Exons are indicated by red boxes. The luciferase reporter gene was conjugated with Lis1 exon 2 (blue boxes) in-frame. 
Constructs were transfected into DRG neurons using the pGV3 reporter gene vector. The Renilla luciferase expression 
vector pRLSV40 used as an internal control. Right panel: luciferase activity after 24 h. Relative luciferase activities are 
shown as mean ± SE of three independent transfected cultures with two replicates per culture. Deletion construct #59 
showed the highest luciferase activity, defining the suppressor region to within the deleted span. �P < 0.05 by ANOVA. 
(B) Left panel: schematics of constructs including smaller deletions within this span. Right panel: quantitation. Relative 
luciferase activity was the highest for a deletion of ~4−10 kbp from the start of exon 1 (construct #9-1). Whole-neuron 
images showing CTCF effects on axonal extension. (C) CTCF expression was examined by a Western blotting. There 
was no significant difference between P3 DRG neurons and P15 DRG neurons.
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Figure S3 (related to Figure 7)

Transection model of mouse SN injury. (A) Control images of SN cross sections from sham-treated WT mice. Imaging 
modality, orientation, and magnification are as follows: panel 1, low-magnification Prussian blue staining; panel 2, 
high-magnification Prussian blue staining; panel 3, electron microscopic (EM) image at low magnification; panel 4, EM 
at higher-magnification. (B) Gait analysis during recovery from SN transection. Footprint patterns of mice following 
unilateral SN transection. Untreated model mice exhibited imbalanced and asymmetric gait patterns with increased 
“toe-out” angles in the injured limb and asymmetric right versus left limb step lengths. SNJ1945 treatment improved 
asymmetric gaiting. (C) Photos of mouse legs after three month of the drug treatment. The control mouse displayed 
defective grasping of the cage bars by the foot on the injured (left) side, whereas the SNJ1945-treated mouse displayed 
partial improvement (right side).
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Figure S4 (related to Figure 8): Regulatory function of LIS1 and CTCF during embryonic brain development.

(A) Age-dependent downregulation of axonal extension capacity in cortical neurons. Cortical neurons were isolated 
from WT P3, P15, and P60 mice. Axons were visualized by Tuj1 immunostaining (red) 7 days after plating. Nuclei were 
counterstained with DAPI (blue). Upper panels: representative images. Lower panel: mean (±SE) axonal extension 
revealing age-dependent reduction as in DRG neurons. Numbers of neurons examined indicated in brackets. *P < 0.05 
by ANOVA. (B) LIS1 expression in the brain examined by western blotting with GAPDH as the internal control. 
Endogenous expression of LIS1 was downregulated at P15 and P60.
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Movie 1: GSK3 transport in DRG neurons

Movie 2: Sciatic nerve injury model (Cont)

Movie 3: Sciatic nerve injury model (SNJ treated)
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http://movie.biologists.com/video/10.1242/bio.025999/video-2
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