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a b s t r a c t

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder, characterized by
impaired social interaction, repetitive behavior and restricted interests. Although the molecular etiology
of ASD remains largely unknown, recent studies have suggested that de novo mutations are significantly
involved in the risk of ASD. We and others recently identified spontaneous de novo mutations in PKD2, a
protein kinase D family member, in sporadic ASD cases. However, the biological significance of the de
novo PKD2 mutations and the role of PKD2 in brain development remain unclear. Here, we performed
functional analysis of PKD2 in cortical neuron development using in utero electroporation. PKD2 is highly
expressed in cortical neural stem cells in the developing cortex and regulates cortical neuron develop-
ment, including the neuronal differentiation of neural stem cells and migration of newborn neurons.
Importantly, we determined that the ASD-associated de novo mutations impair the kinase activity of
PKD2, suggesting that the de novo PKD2 mutations can be a risk factor for the disease by loss of function
of PKD2. Our current findings provide novel insight into the molecular and cellular pathogenesis of ASD.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Autism spectrum disorder (ASD) is a group of intractable neu-
rodevelopmental disorders with impairments in social interactions
and verbal communication abilities, restricted interests and ste-
reotyped repetitive behaviors [1]; the prevalence rate of ASD is 1 in
40 children [2]. Previous studies have suggested that aberrant brain
development is critically involved in ASD [3e6]; however, the
molecular etiology underlying the pathological phenotypes of ASD
remains largely unclear. Currently, there are no established treat-
ment strategies for the core symptoms of ASD. Thus, the develop-
ment of new treatment approaches based on the molecular
etiology and pathophysiology of ASD is urgently needed [7,8].

Molecular genetic studies have suggested that ASD is highly
heterogeneous, with many types of genetic abnormalities [9]. The
concordance rate for ASD inmonozygotic twinswasmore than 90%,
which is significantly higher than the rate in dizygotic twins, sug-
gesting that ASD has a strong genetic component [10,11]. However,
numerous cases of ASD are sporadic, and the genetic cause of
approximately 90% of sporadic ASD cases remains unidentified
[12,13]. Recently, in addition to heritable mutations, de novo muta-
tions, new genomic mutations found in a child but found in neither
of the parent, havebeen investigated as a risk factor for ASD [14e17].

Protein kinase D (PKD) is a serine/threonine protein kinase with
a catalytic domain and two cysteine-rich phorbol ester binding
domains similar to those of protein kinase C [18,19]. The PKD family
members consist of PKD1, PKD2 and PKD3, which are ubiquitously
but differentially expressed depending on the cell type and external
stimulation [20,21]. In peripheral proliferative tissues, PKD2 plays
important roles in cell growth and differentiation [22,23]. In
addition to peripheral tissues, PKD2 is highly expressed in the
brain, where it regulates the establishment and maintenance of
neuronal polarity [24,25]. Recently, we and others have identified
de novomutations in PKD2 from patients with sporadic ASD [26,27],
suggesting that the de novo mutations in PKD2 can be associated
with the risk of ASD. Considering that ASD is suggested to be caused
by aberrant cortical neuron development [3e6], PKD2may regulate
cortical neuron development.

In this study, we conducted a functional analysis of PKD2 in
cortical neuron development in vivo. We found that PKD2 was
highly expressed in neural stem cells (NSCs) in the embryonic ce-
rebral cortex and that Pkd2 knockdown disrupted neuronal devel-
opment in the cerebral cortex in mouse embryos. Furthermore, we
showed that the ASD-associated de novo PKD2mutations decreased
the autophosphorylation levels of PKD2 and its downstream ki-
nases, ERK1/2, suggesting that the de novo mutations impaired the
kinase activity of PKD2. Taken together, our current results strongly
suggest that PKD2 regulates cortical neuron development and that
ASD-associated de novo PKD2 mutations can be a risk factor for the
disease by loss of function of PKD2.

2. Materials and methods

2.1. Reverse transcription and real-time PCR

Reverse transcription of total RNA isolated from cells and tissues
was performed using Superscript III (Life Technologies, CA, USA).
The RNA transcription levels were measured by real-time PCR with
SYBR Premix Ex Taq (TaKaRa Bio Inc., Shiga, Japan) using a CFX96
real-time PCR detection system (Bio-Rad Laboratories, CA, USA) as
described previously [26]. The expression levels of Pkd2 (forward
primer sequence: 50-CTGTTCTATCGTGGACCAGAAGT-3'; reverse
primer sequence: 50-GGCTGATGTTGGGTCATGTT-30) were normal-
ized to the expression levels of Gapdh (forward primer sequence:
50-GTGTTCCTACCCCCAATGTG-3'; reverse primer sequence: 50-
TACCAGGAAATGAGCTTGAC-30) and were determined in accor-
dance with the 2�DDCt method.

2.2. Plasmid preparation

A plasmid vector expressing Myc-tagged wild-type (WT) PKD2
was generated by subcloning a PCR-amplified PKD2 cDNA (Kazusa
DNA Res. Inst., Chiba, Japan, clone ID: cp93316) into the pcDNA3
expression vector. De novo mutations and kinase active mutations
of PKD2 (PKD2S706/710E) [28,29] were generated using a KOD
mutagenesis kit according to the manufacturer's instructions
(Toyobo, Osaka, Japan). TheMISSION shRNA against PKD2 construct
(shPKD2; TRCN0000024328, hairpin sequence of 50 flanking-sense
strand-loop-antisense strand-30 flanking: 50-CCGG-GTACGACAA-
GATCCTGCTCTT-CTCGAG-AAGAGCAGGATCTTGTCGTAC-TTTTT-30)
was purchased from Sigma-Aldrich (MO, USA) [26]. The hairpin
sequence of miR30-based shRNA against PKD2 (shPKD2miR30)
(hairpin sequence of 50 flanking-sense strand-loop-antisense
strand-30 flanking: 50-TGCTGTTGACAGTGAGCG-CGCAGTAAAGGT-
CATTGACAAA-TAGTGAAGCCACAGATGTA-TTTGTCAATGACCTT-
TACTGCA-TGCCTACTGCCTCGGA-30) was designed using a design
tool (http://cancan.cshl.edu/RNAi_central/RNAi.cgi?type¼shRNA).
The template oligonucleotide carrying the shPKD2miR30 sequence
purchased from Eurofins Genomics (Tokyo, Japan) was amplified
via PCR and subcloned into a pCAG-miR30 vector.

2.3. Measuring the knockdown efficiency of shRNA

The pCAG-GFP vector, MISSION shRNA or shRNAmiR30 constructs
and the pcDNA3 expression construct encoding WT mouse PKD2
were transfected into HEK293Tcells. Three days later, total RNAwas
isolated from the transfected cells, and the mouse Pkd2 mRNA
levels were measured by real-time PCR. The knockdown efficacy
was normalized by transfection efficiency.

2.4. In utero electroporation

In utero electroporation was conducted on embryonic day 14.5
(E14.5) ICR embryos (SLC, Shizuoka, Japan) as described previously
[30]. MISSION shRNA or shRNAmiR30 constructs (1 mg/mL), the
pcDNA3 expression construct encoding kinase active mutant of
PKD2 (PKD2S706/710E) (1 mg/mL) and the pCAG-GFP vector (0.5 mg/mL)
were injected into the lateral ventricles. The embryos were har-
vested at E16.5 or E18.5, and three non-adjacent coronal sections
per brainwere imaged for quantification. The imageswere acquired
with an FV1000 confocal microscope (Olympus, Tokyo, Japan) and
analyzed with ImageJ software (NIH, MD, USA) and Adobe Photo-
shop CS (Adobe Systems, CA, USA).

2.5. Immunohistochemistry

Mouse embryonic brains were fixed with 4% paraformaldehyde
(PFA) in PBS overnight at 4 �C. The brains were sectioned at a 20 mm
thickness using a cryostat (CM1520, Leica, Welzlar, Germany). The
brain slices were permeabilized with blocking solution containing
0.25% Triton X-100 (Wako, Osaka, Japan), 1% normal goat serum
(Thermo Fisher Scientific, MA, USA) and 1% bovine serum albumin
(Sigma-Aldrich) in PBS for 1 h at room temperature and then
incubated in the blocking solution containing primary antibody at
4 �C overnight. The following day, the slices were incubated with
the blocking solution containing biotinylated secondary antibody
and Hoechst 33258 dye (Calbiochem, CA, USA) for 1 h at room
temperature. The biotinylated secondary antibody was detected
using Texas Red-conjugated streptavidin (#SA-5006, Vector Labs,
CA, USA). The primary antibodies were chicken anti-GFP
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(#ab13970, 1:500, Abcam, Cambridge, UK), rabbit anti-GFP (#598,
1:200, MBL, Aichi, Japan), rabbit anti-PAX6 (#901301, 1:50, Bio-
Legend, CA, USA), rabbit anti-TBR2 (#ab23345, 1:50, Abcam) and
mouse anti-SATB2 (#ab51502, 1:50, Abcam). The secondary anti-
bodies were Alexa Fluor 488-conjugated goat anti-chicken IgY (#A-
11039, 1:500, Life Technologies), Alexa Fluor 488-conjugated goat
anti-rabbit IgG (#A-11008, 1:200, Life Technologies), biotinylated
goat anti-rabbit IgG (#BA-1000, 1:200, Vector Labs) and bio-
tinylated goat anti-mouse IgG (#BA-9200, 1:200, Vector Labs).

2.6. Cell culture and transfection

HEK293T cells were cultured in Dulbecco's modified Eagle's
medium (DMEM) supplemented with high glucose, GlutaMAX (Life
Fig. 1. Pkd2 is highly expressed in the NSCs of the mouse embryonic cerebral cortex. (A)
(each n¼ 3). E, embryonic day; wk, week-old. (B) qRT-PCR analysis of the regional expressio
SVZ, subventricular zone. (C) qRT-PCR analysis of the expression levels of Pkd2 mRNA in N
nificance was analyzed using one-way ANOVA with Bonferroni-Dunn post hoc tests (A and

Fig. 2. Neuronal migration is impaired by Pkd2 knockdown in the mouse developing cer
in HEK293T cells transfected with MISSION shRNA vectors (A) or shRNAmiR30 vectors (F)
Representative images of embryonic cortical sections at E18.5, 4 days after in utero electropo
or shPKD2miR30 (H). Immunohistochemistry for GFP with Hoechst 33258 counterstaining is s
zone of the developing cortex as a percentage of total GFP þ cells (each n¼ 4). CP, corti
mean± SEM. Statistical significance was analyzed using Student's t-test (A and F) and two-
Technologies) and 10% fetal bovine serum at 37 �C in a humidified
atmosphere of 5% CO2. On day 2, transient transfections were
performed using TransIT-LT1 Transfection Reagent (Mirus Bio LLC.,
WI, USA) as described previously [31]. On day 5, the transfected
cells were harvested and lysed with radioimmunoprecipitation
assay buffer.

2.7. Immunoblotting

Cell lysates were analyzed by SDS-PAGE followed by transfer to
polyvinylidene difluoride membranes and blotting with the indi-
cated antibodies as described previously [32]. The primary anti-
bodies were mouse anti-Myc (9E10) (#sc-40, 1:400, Santa Cruz
Biotechnology, CA, USA), rabbit anti-PKD2 (phospho-S876)
qRT-PCR analysis of the temporal expression patterns of Pkd2 mRNA in the mouse brain
n patterns of Pkd2 mRNA in the mouse brain at E16.5 (each n¼ 3). VZ, ventricular zone;
SCs and neurons (each n¼ 3). Data are presented as the mean± SEM. Statistical sig-
B) and Student's t-test (C). *P < 0.05, ***P< 0.001 (A, vs 8wk; B, vs cortex VZ/SVZ).

ebral cortex. (A and F) Knockdown efficacy of shRNA against PKD2 (shPKD2) measured
together with pcDNA3 encoding WT mouse PKD2 (each n¼ 4). (B, C, D, G and H)

ration with shControl (B), shPKD2 (C), shPKD2 and PKD2S706/710E (D), shControlmiR30 (G)
hown. Scale bars, 100 mm. (E and I) Quantification of GFPþ cell position in the indicated
cal plate; IZ, intermediate zone; SVZ, subventricular zone. Data are presented as the
way ANOVA with Bonferroni-Dunn post hoc tests (E and I). *P < 0.05, ***P< 0.001.
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(#ab51251, 1:1000, Abcam), mouse anti-ERK2 (D-2) (#sc-1647,
1:500, Santa Cruz Biotechnology), and rabbit anti-phospho-p44/42
MAPK (ERK1/2) (T202/Y204, T185/Y187) (#9101, 1:500, Cell
Signaling Technology, MD, USA). The secondary antibodies were
horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG
(#sc-2004, 1:1000, Santa Cruz Biotechnology) and alkaline phos-
phatase (AP)-conjugated goat anti-mouse IgG (#sc-2008, 1:1000,
Santa Cruz Biotechnology).

2.8. Data analysis and statistics

Statistical analysis was performed using Stat-View (SAS Insti-
tute, NC, USA). The quantified data were analyzed using Student's t-
test, one-way ANOVA followed by Bonferroni-Dunn post hoc tests
and two-way repeated-measures ANOVA followed by Bonferroni-
Dunn post hoc tests.

3. Results

3.1. Temporal, regional and cell type-specific expression patterns of
Pkd2 in the brain

To reveal the function of PKD2 in the brain, we first analyzed the
Fig. 3. The neuronal differentiation of NSCs is impaired by Pkd2 knockdown in the mou
cortical sections at E16.5, 2 days after in utero electroporation with shControl (A, E and I), sh
GFP and PAX6 (AeC), TBR2 (EeG) or SATB2 (IeK) is shown. Yellow boxes indicate areas enla
yellow scale bars, 20 mm. CP, cortical plate; IZ, intermediate zone, VZ, ventricular zone; SVZ
centage of total GFPþ cells (each n¼ 4). Data are presented as the mean ± SEM. Statistical s
*P < 0.05, ***P< 0.001.
temporal and regional expression patterns of Pkd2 mRNA in the
mouse brain. Pkd2 expression levels were elevated during embry-
onic neurogenesis between E10.5 and E16.5 and gradually
decreased after birth (Fig. 1A). At E16.5, Pkd2 was relatively highly
expressed in the ventricular and subventricular zones (VZ/SVZ) of
the cerebral cortex, where radial glial cells, embryonic neural stem
cells (NSCs), differentiate into young neurons during embryonic
cortical development (Fig. 1B). We then analyzed the Pkd2 mRNA
levels in NSCs and neurons and found that Pkd2 expression was
higher in NSCs than neurons (Fig. 1C). These expression patterns of
Pkd2 suggest that PKD2 is involved in cortical neuron development.
3.2. The effects of Pkd2 knockdown on cortical neuron development

Next, to investigate the role of PKD2 in embryonic neurogenesis,
we knocked down the expression of Pkd2 using shRNA (shPKD2;
MISSION TRC shRNA library SP1, Sigma-Aldrich) and miR30-based
shRNA (shRNAmiR30), both of which target Pkd2. The knockdown
efficacies of shPKD2 and shPKD2miR30, whose target sites are
different from each other, were validated, and we found that these
constructs effectively decreased the Pkd2 mRNA level (Fig. 2A and
F). Each shRNAvector together with a GFP expression construct was
introduced into VZ cells by in utero electroporation at E14.5. Four
se developing cerebral cortex. (A-C, E-G and IeK) Representative images of embryonic
PKD2 (B, F and J) or shPKD2 and PKD2S706/710E (C, G and K). Immunohistochemistry for
rged in the lower panels. Arrowheads indicate colabeled cells. White scale bars, 50 mm;
, subventricular zone. (D, H and L) Quantification of cell markerþ GFPþ cells as a per-
ignificance was analyzed using one-way ANOVA with Bonferroni-Dunn post hoc tests.
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days later, we harvested the embryos, sectioned the brains and
analyzed the migration of GFPþ neurons. At E18.5, the migration of
GFPþ cells was impaired by MISSION shPKD2-mediated Pkd2
knockdown (Fig. 2B, C and E). Overexpression of a kinase active
mutant of PKD2 (PKD2S706/710E) [28,29], but not WT-PKD2, rescued
the impaired migration (Fig. 2D and E and data not shown). Like-
wise, knockdown of Pkd2 by shPKD2miR30 also impaired the
migration of GFPþ cells (Fig. 2GeI). These results suggest that PKD2
regulates embryonic neuronal development in the cerebral cortex.

To further examine the function of PKD2 in neuronal differen-
tiation, at E16.5, 2 days after in utero electroporation, we stained the
brains of embryos with antibodies against PAX6 (NSC marker),
TBR2 (intermediate progenitor cell marker) and SATB2 (neuron
marker). With Pkd2 knockdown, the proportion of GFPþ PAX6þ

NSCs was increased (Fig. 3A, B and D). The proportions of GFPþ

TBR2þ intermediate progenitor cells and GFPþ SATB2þ neurons
were decreased and correlated with the increased NSCs (Fig. 3E, F,
H, I, J and L). The altered proportion of each type of cell was rescued
by overexpression of PKD2S706/710E (Fig. 3C, D, G, H, K and L). These
results suggest that PKD2 regulates the differentiation of NSCs into
neurons during embryonic neuron development.
Fig. 4. The kinase activities of ASD-associated de novo mutated PKD2 variants are impair
novo mutations. C1a and C1b, protein kinase C conserved phorbol esters/diacylglycerol bind
serine/threonine kinase. (B) Representative western blots of phosphorylated PKD2 (p-PKD
intensity of p-PKD2 (S876) normalized by each myc-tagged PKD2 level (each n¼ 4). (D)
Quantification of the relative band intensity of p-ERK1/2 normalized by each ERK2 level (ea
using one-way ANOVA with Bonferroni-Dunn post hoc tests. *P < 0.05, **P< 0.01 (vs WT).
3.3. The effects of ASD-related de novo mutations on the kinase
activity of PKD2

Previously, we identified a de novomutation, S183 N, within the
protein kinase C conserved phorbol esters/diacylglycerol binding
(C1a) domain of PKD2 from an ASD patient [26] (Fig. 4A). Another
group also identified an ASD-related de novo mutation, R232C,
between the C1a and C1b motifs [27] (Fig. 4A). To investigate the
effect of the de novo mutations on the kinase activity of PKD2, we
assessed the autophosphorylation levels at the S876 residue, a
phosphorylation site related to the kinase activity of PKD2 [33]. We
found that the S876 phosphorylation levels of S183N-mutated- and
R232C-mutated-PKD2 were decreased compared to WT-PKD2 in
HEK293T cells (Fig. 4B and C). Since previous reports have found
that PKD2 is an upstream regulator of ERK [34,35], we next
analyzed the phosphorylation levels of ERK in HEK293T cells
expressing Myc-tagged WT-, S183N-mutated- and R232C-
mutated-PKD2. We found that the phosphorylation levels of ERK
were decreased in the lysates fromHEK293T cells expressing the de
novo mutated variants compared to WT-PKD2 (Fig. 4D and E),
confirming that ASD-related de novomutations impaired the kinase
activity of PKD2.
ed. (A) Schematic image of human PKD2 protein (NP_057541.2) and ASD-associated de
ing domain; PH-PKD, pleckstrin homology domain; STKc-PKD, catalytic domain of the
2) (S876) and myc-tagged PKD2 (myc-PKD2). (C) Quantification of the relative band
Representative western blots of p-ERK1/2 (T202/Y204 and T185/Y187) and ERK2. (E)
ch n¼ 4). Data are presented as the mean± SEM. Statistical significance was analyzed
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4. Discussion

Although previous studies have shown that PKD2 positively
regulates retinoic acid-induced neuronal development in mouse
neuroblastoma Neuro2a cells [26] and the establishment and
maintenance of neuronal polarity in neurons [24,25], the role of
PKD2 in neurogenesis is largely unknown. In this study, we found
that PKD2was highly expressed in the VZ/SVZ of the cerebral cortex
during embryonic neurogenesis (Fig. 1). Our current results showed
for the first time that PKD2 regulated the neuronal differentiation
of NSCs and the migration of newborn neurons in the developing
cerebral cortex (Figs. 2 and 3). Importantly, the ASD-associated de
novo mutations impaired the kinase activity of PKD2 (Fig. 4). Since
previous studies have identified an association between the dis-
rupted development of the cerebral cortex and ASD [3e6], the
impaired neuronal development caused by de novo mutations in
PKD2 may be an underlying mechanism of ASD development.

ERK phosphorylation is a key event for neuronal development,
such as neuronal differentiation [36,37] and migration [38,39]. ERK
signaling regulates the balance between the self-renewal and
neuronal differentiation of NSCs; while phosphorylated ERK acti-
vates the STAT3 pathway to induce neuronal differentiation [37,40].
Inhibition of ERK phosphorylation drives the Akt pathway to shift
the balance toward the self-renewal of NSCs [41]. PKD2 may
regulate embryonic cortical neuron development by changing the
balance between the self-renewal and neuronal differentiation of
NSCs through modulating ERK activity. Since a previous report
found that the hippocampal structure of adult Pkd2 knockout mice
was virtually normal compared to that ofWTmice [24], the delayed
neuron development induced by Pkd2 knockdown may catch up
during development.

While overexpression of the kinase active variant of PKD2
(PKD2S706/710E) rescued the impaired cortical neuron development
(Figs. 2 and 3), overexpression of WT-PKD2 could not (data not
shown). Although the precise underlying mechanism remains un-
known, overexpressed mRNA might not be able to act as an
endogenousmRNA encoding PKD2 in terms ofmRNA localization in
the cells, mRNA splicing events, etc. Alternatively, the amount of
overexpressed PKD2 may not be enough to rescue the knockdown
phenotype.

In summary, our current findings suggest that de novomutations
in PKD2 may impair cortical neuron development, resulting in ASD
development. In addition to PKD2, de novo mutations were iden-
tified in other PKD family members, such as PKD1 and PKD3, as well
as distantly related PKC family members, such as PKCA, PKCB, PKCE,
PKCQ and PKC2 [16,17,27,42e46] (Supplementary Table 1). In
addition to genetic studies, recent molecular studies suggest that
aberrant PKC signaling is involved in ASD [47e49]. Further analysis
focusing on de novo mutations in PKD family members and
distantly related PKC family members will provide novel insights
into the molecular etiology and pathophysiology of ASD.
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