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Editorial on the Research Topic

The Earliest-Born Cortical Neurons as Multi-Tasking Pioneers: Expanding Roles for Subplate

Neurons in Cerebral Cortex Organization and Function

The subplate is a unique layer in the mammalian neocortex. It consists of the earliest-born
neurons in the neocortex and undergoes a massive reduction in the number of neurons during
postnatal development. The subplate is also characterized by its heterogeneity in cell morphology,
incomparable gene expression pattern, and an early functional maturation. This diversity in
form and function is evident in its role in circuit formation processes between the cortex and
thalamus and also within a local cortical area above it. Disruptions of the subplate can lead to
neurodevelopmental deficits such as autism spectrum disorder.

Postmitotic neurons born in the ventricular zone first form the preplate together with
Cajal-Retzius cells, which originate from three distinct regions of the dorsal telencephalon
(reviewed in Barber and Pierani, 2016). The preplate is then split, by later-born neurons
coming in between to form the cortical plate, into the marginal zone at the surface (containing
Cajal-Retzius cells) and the subplate at the base of the cortical plate. Although most of the
subplate neurons are early born preplate neurons in rodents, the vast majority of subplate
neurons are generated during mid-gestation in primates (Duque et al., 2016). While many
subplate neurons are lost during postnatal development, not all of them disappear. Recent
morphological and gene expression studies have provided evidence that layer 6b in the adult
(or juvenile) cortex contains remnant subplate neurons (Hoerder-Suabedissen et al., 2013; Marx
et al., 2017). Subplate neurons exhibit morphological heterogeneity in the somatodendritic
structure. In addition to typical pyramidal neurons found in layers 2-6a; horizontal cells,
multipolar cells, inverted pyramidal cells, fusiform cells, and polymorphous cells are among
those reported in the subplate (Mrzljak et al., 1988; Hanganu et al., 2002). These cell types are
maintained between the early postnatal subplate and juvenile layer 6b despite a decrease in their
abundance (Marx et al., 2017). The subplate is more than a transient embryonic structure. In
primates, the subplate is much thicker, and subplate neurons remain as “interstitial cells” in
the white matter (Kostovic and Rakic, 1990), suggesting prominent roles of subplate neurons in
primates. As pyramidal neurons increase in abundance in layer 6b, it is suggested that layer 6b
consists of remnant subplate neurons and cortical pyramidal neurons. Interestingly, intermediate

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://doi.org/10.3389/fnana.2020.00043
http://crossmark.crossref.org/dialog/?doi=10.3389/fnana.2020.00043&domain=pdf&date_stamp=2020-08-25
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles
https://creativecommons.org/licenses/by/4.0/
mailto:makosato@anat2.med.osaka-u.ac.jp
https://doi.org/10.3389/fnana.2020.00043
https://www.frontiersin.org/articles/10.3389/fnana.2020.00043/full
http://loop.frontiersin.org/people/197716/overview
http://loop.frontiersin.org/people/466535/overview
https://www.frontiersin.org/research-topics/6605/the-earliest-born-cortical-neurons-as-multi-tasking-pioneers-expanding-roles-for-subplate-neurons-in


Sato and Chou Subplate Neurons as Multi-Tasking Pioneers

progenitor cells expressing Tbr2 contribute to projection neurons
in all layers, including preplate Cajal-Retzius neurons and the
subplate (Vasistha et al., 2015; Mihalas et al., 2016), suggesting
that pyramidal neurons that increase in juveniles might derive
from Tbr2-expressing progenitors.

Transcriptomic analyses of cortical neurons and those focused
on subplate neurons, identified genes specifically expressed in
subplate/layer 6b with a differential time course (Bernard et al.,
2012; Oeschger et al., 2012; Hoerder-Suabedissen et al., 2013;
Tasic et al., 2016). A cell clustering analysis based on single cell
RNAseq data classified layer 6b cells into two cell types (Tasic
et al., 2016). Molecular markers for subplate/layer 6b neurons,
however, have been shown to be expressed in overlapping
populations (Hoerder-Suabedissen and Molnár, 2013; Tiong
et al.), making it difficult to correlate gene expression profiles
with cellular morphology, neuronal connection patterns, and
electrophysiological properties.

During the embryonic stage, the subplate serves as a critical
interface between cortical neurons and incoming thalamocortical
axons. Thalamocortical axons transiently connect with subplate
neurons before they enter the cortical plate and finally
reach layer 4 (Kostovic and Goldman-Rakic, 1983; Kageyama
and Robertson, 1993; Herrmann et al., 1994). This transient
connection is functional, as thalamic stimulations in the
thalamocortical slices from rat embryos induce responses
in subplate neurons (Higashi et al., 2002; Molnár et al.,
2003), indicating the early maturation of subplate neurons.
Furthermore, subplate neurons contain positional cues for
thalamic axons to target appropriate cortical areas. When
the areal identity is disorganized by mis-expressing cortical
patterning molecule FGF8, in the subplate as well as in
cortical plate, thalamic axons run longer in the subplate
before they turn into the cortical plate (Shimogori and
Grove, 2005). On the other hand, projection to the thalamus
by subplate neurons was thought to pioneer the cortico-
thalamic projections by neurons in layers 5 and 6. At least
in ferrets, however, axons of layer 5 neurons arrive at the
thalamic nuclei earlier than those of subplate and layer 6
neurons (Clascá et al., 1995), arguing against the pioneering
function of subplate axons. Additionally, the subplate (layer
6b) also shapes corticofugal pathways (Grant et al., 2012) and
callosal connections (deAzevedo et al., 1997). For example,
retinal inputs regulate layer 6b neuronal projections, which
may in turn influence the projection of layer 5 neurons
(Grant et al., 2016).

Subplate neurons are also indispensable for local network
formation, especially in the primary sensory areas. For example,
ablation of the subplate in the visual cortex affects ocular
dominance column formation by affecting the maturation of
thalamocortical connections to layer 4 (Ghosh and Shatz, 1992;
Kanold and Shatz, 2006).

In addition to the foundational studies described above, recent
work has revealed new aspects of the subplate function and form,
such as modulation of radial migration of later-born neurons

(Ohtaka-Maruyama et al., 2018), extra-cortical origins (Pedraza
et al., 2014), and fate selection of later-born neurons (Ozair
et al., 2018). This Research Topic entitled The Earliest-Born
Cortical Neurons as Multi-Tasking Pioneers: Expanding Roles for
Subplate Neurons in Cerebral Cortex Organization and Function,
consists of a collection of three Review articles that provide
up-to-date overviews on multiple functions of the subplate in
cortical development and two Original Research articles that
report novel findings in the development and function of
the subplate.

Luhmann et al. summarize the electrophysiology of subplate
neurons including intrinsic membrane properties and firing
patterns, and input/output connection patterns of subplate
neurons, discussing possible roles in cortical spindle burst and
gamma oscillation.

A review by Kanold et al. explains sensory-evoked plasticity of
neuronal circuits of subplate neurons during development and in
pathological conditions, focusing on the silent synapses formed
onto them.

In addition to the two Review articles above, a Mini Review
by Ohtaka-Maruyama features a novel function of the subplate
in the regulation of the migration of cortical plate neurons.
This finding revealed another mechanism for mode switching
of neuronal migration from slow multipolar migration to rapid
locomotion, guided by radial fibers.

Yu et al. use conditional mouse knockouts to define new
functions of a well-established subplate marker gene, Ctgf, in
regulating the number and dendritic complexity of subplate
neurons, and maturation of oligodendrocytes in the white matter
beneath the primary somatosensory cortex.

Finally, an article by Tiong et al. identified a novel marker gene
for the mouse embryonic subplate and shows that it is expressed
in 80% of layer 6b neurons in the primary somatosensory cortex
that project axons to the primary motor cortex. This marker
should be a useful tool to study functions of subplate neurons at
early stages of cortical development.

The aim of this Research Topic is to highlight the versatility
of the subplate in cortical development and to attract readers
to this unique layer in the mammalian neocortex. We would
like to thank all the contributors and readers and hope future
work will elucidate developmental mechanisms and circuit
functions of the subplate, which is important both scientifically
and clinically.
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